2012년 8월호

지도 위의 고객 정보 황금 캐는 열쇠 된다

GIS, 경영자 위한 항해 지도

  • 송규봉│GIS United 대표 황선영│GIS United 연구원

    입력2012-07-19 17:07:00

  • 글자크기 설정 닫기
    • 고객은 어디에 있는가? 여기 있는 고객은 누구인가? 이런 의문을 가진 오늘날의 경영자라면 지리정보시스템(GIS·Geographic Information System)을 활용할 줄 알아야 한다. GIS란 지리공간 정보를 체계적으로 구축하고 관리, 분석하는 컴퓨터 기반의 시스템을 가리킨다. GIS에 고객정보를 더하면 성공하는 비즈니스의 실마리가 보인다. GIS의 개념과 가치, 그리고 GIS를 활용한 성공사례를 살펴본다. 이 글은 동아일보가 격주로 발행하는 비즈니스 전문지 108호(2012년 7월호)에 실렸다. <편집자 주>
    지도 위의 고객 정보 황금 캐는 열쇠 된다
    뛰어난 선장은 파도 대신 해류를 읽는다. 1200년 전 장보고 선단은 하늘, 바람, 물, 지리를 분석하며 항로를 개척했다. 지문항법으로 육상이나 섬의 모양을 살펴 항해하고, 천문항법으로 해와 별자리를 읽으며 나아갔다. 또 수문항법으로 수심과 해류를 파악해 바람이 서로 다른 한반도와 동아시아 바다를 자유자재로 넘나들었다.

    기업 경영은 항해와 같다. 피터 드러커는 직관에 의존한 기업 경영에 대해 강하게 경고한다. ‘나침반의 방위가 없이 배는 항구를 찾을 수도, 또 그곳에 도착하는 시간을 예측할 수도 없다.’ 기업을 ‘육감’으로 운영할 수 없으며, 대신 항공기 계기판과 같은 경영 도구가 필요하다고 역설했다. 나아가 저서 ‘기업가 정신’에서는 경영의 도구로 ‘기업 X-ray(Business X-ray)’를 강조했다.

    X-ray에 제1회 노벨상이 주어졌다. 그러고 보면 생명에 관해 보이지 않는 것을 보게 한 위대한 발명은 모두 노벨상을 받았다. X-ray(1901)에 이어 CT(컴퓨터단층촬영·1979), 전자현미경(1986), MRI(자기공명영상·2003)가 그렇다. 기업 경영에도 보이지 않는 것을 촬영하는 X-ray나 MRI가 없을까? 변화의 파도 속에서 트렌드를 읽어낼 경영 도구는 없을까?

    미 국립학술원이 발행한 ‘공간적으로 사고하기’는 우리 사회에 통용되는 정보의 80% 이상이 지리공간적이라고 알려준다. 전자제품, 자동차, 선박, 농수산물 모두 시장에서 시장으로 이동한다. 상품과 서비스가 이동할 때 정보, 부(富), 기회도 함께 이동한다. 새로운 항해를 준비하는 경영자가 있다면 그는 당연히 80%의 정보를 담을 수 있는 새로운 지도에서 출발할 것이다.

    구글이 Keyhole 인수한 이유



    구글이 안드로이드를 인수한 것은 2005년이다. 스마트폰 시대를 대비한 포석이었다. 바로 한 해 전 구글은 키홀(Keyhole)이라는 컴퓨터 지도 회사를 인수했다. 지리정보 시대를 대비한 전략이었다. 구글은 360도 촬영 카메라를 보트에 부착해서 아마존 강의 풍경을 지도에 올리고 있다. 자전거나 배낭에 소형 카메라를 매달아 디즈니랜드, 알프스, 유명 레스토랑의 실내 정경까지 찍어 지도에 올려서 연동하고 있다.

    애플은 스티브 잡스의 유훈대로 구글과의 전면전을 불사하고 있다. 애플은 2009년 이후 컴퓨터 지도 벤처 3개(Placebase, Poly9, C3 Technologies)를 연달아 인수했다. 이미 애플 마니아들은 구글맵(Google Map)에 대항할 아이맵(iMap)의 등장을 손꼽아 기다리고 있다. 일부의 예상대로 애플은 자사의 최신 운영체계(iOS6)에서 구글맵을 아예 제외했다.

    스마트폰 시대에도 사용자들은 e메일과 뉴스를 가장 많이 검색한다. 그러나 모바일 시대답게 이동 중 ‘지도 서비스’를 찾는 정보 수요가 폭증하고 있으며, 전략적으로도 점점 더 중요해지고 있다. 글로벌 무대에서는 구글맵과 아이맵, 국내 무대에서는 네이버 지도와 다음 지도의 전쟁이 치열한 배경이다. 지도는 선택이 아니라 필수가 되었다.

    지리정보를 전략적으로 활용하는 글로벌 기업의 노력은 구글맵 탄생 이전부터 시작됐다. 1993년 체이스은행은 출점 전략에 컴퓨터지도, 즉 GIS를 활용했다. 주간인구와 야간인구를 구분해 은행지점 및 ATM 입지 선정에 지리정보를 적용한 것이다. 또 출퇴근 고객과 상주인구에 대해 차별화된 마케팅과 상품을 제공했다. 시티금융그룹은 남미시장에 새로운 금융 브랜드를 개척할 때 GIS를 통해 목표고객의 밀집지를 추적하고 기존 지점과의 접근성을 분석해 적정 점포 수를 산정했다.

    1993년 미 항공우주국(NASA)은 전략 변화에 맞춘 연구개발(R·D)캠퍼스의 공간 재배치를 GIS로 완료했고, 매사추세츠공과대학교(MIT)도 전체 건물과 시설물을 3D 지도에 옮겨 공간 효율화를 추구했다. 스타벅스는 1995년 GIS를 기반으로 잠재시장을 분석하고 점포별 매출 예측을 통해 출점을 결정하는 전략을 구사했다. 도요타는 2000년 호주시장에서 영업지원 온라인지도 솔루션을 이용해 점유율 1위 자리를 강화했다. 2003년 혼다는 인도에 스마트 물류시스템을 지도 기반으로 자동화했다.

    1990년대 중반 나이키는 제1차 GIS 기반 전략 툴을 도입한 이후 3차에 걸쳐 지역별 인구, 가구, 경제통계, 시장정보에 내부 데이터(매장정보, POS, 고객DB)를 통합해 비즈니스 인텔리전스(BI) 솔루션을 개발, 활용하고 있다. 2000년 GE에너지는 영국 케임브리지 소재 GIS 벤처기업 스몰월드(Smallworld)를 인수한다. 석유, 가스, 전기, 원자력, 풍력 등 전기를 생산하는 전 분야를 포괄하는 GE에너지에 지리정보는 전략적 사활이 걸린 중대한 지식기반이다.

    미국은 어떻게 지리정보 초강국이 됐을까. 군사정보에 속하던 공간지식을 민간기업의 수중으로 넘겨준 덕분이다. 클린턴 정부가 집권한 1993년부터 2000년까지 대학 연구실과 일부 벤처기업의 울타리 안에 갇혀 있던 GIS와 GPS(Global Positioning System) 기술은 지방정부와 산업 현장으로 급속히 확산된다. 정부의 보관창고에 숨어 있던 지리정보가 인터넷을 통해 공개되고 GIS 전문가가 참여하면 광활한 새로운 시장이 열린다.

    그 후로 마이크로소프트, 리바이스, 노스페이스, 홈디포, 마스터카드, 시어스 등 선도기업들이 전략, 마케팅, 물류, 부동산, 시설물 관리, 고객 분석 등에 지리정보를 적극적으로 사용했다.

    이런 선진 경영 도구는 일찍이 일본에 먼저 상륙한다. 예를 들어 요미우리신문의 전단지는 GIS 기반의 소지역으로 세분화됐다. 작은 블록마다 신문사별 구독자 수를 표시해 광고주의 합리적인 의사결정을 지원한다. 롯폰기힐을 개발한 ‘모리빌딩’은 개발사업을 검토하는 전 과정에 지리정보를 토대로 사업계획을 진척시킨다.

    GIS는 2000년대 초·중반 새로운 경영 도구로서 한국에 뿌리내리기 시작했다. 최초로 백화점에서 아파트 고객을 분석해 지역 마케팅 실험을 진행했다. 전국에 수백 개의 점포를 운영하는 식음료 브랜드는 점포 유형별로 매출 예측을 시도했다. 신용카드 회사가 가맹점과 카드 사용자 사이의 소비 함수를 지도 위에 뿌려놓고 분석했다. 그렇게 gCRM(GIS 기반의 CRM·CRM은 Customer Relationship Management, 즉 고객관계관리)이라는 독특한 용어가 대한민국에서 탄생하게 됐다.

    지식경제부에 따르면 지난 한 해 우리나라에서 판매된 자동차는 약 150만 대로 성인인구 25명 중 한 명이 자동차를 구입했다. 이들이 구입한 자동차는 500만∼8억 원대. 차종도 연비도 매우 다양하다.

    강남구, 송파구, 그리고 김앤장

    선호도는 지역적으로도 천차만별이다. 고급 외제 승용차는 예상대로 고소득자가 많은 강남구와 서초구에서 집중적으로 선호되고 있다. 그런데 고급 외제 승용차를 선호하는 지역이 또 한 곳 있다. 김앤장 법률사무소 인근 지역이다. 한마디로 변호사들이 몰려 있는 곳에서 고급 외제 승용차가 잘 팔린다는 얘기다.

    선호하는 제품이 다른 만큼 매장 입지도 달라야 하고 그에 맞춰 물량 계획도 달라져야 한다. 지역별 수요 예측과 공급의 불균형이 발생하면 먼 지역에 있는 자동차를 운송해 와야 한다. 고객은 빠르면 일주일에서 늦으면 한두 달까지 기다려야 하고 기업은 자동차 수송, 보관, 하역 등 원거리 탁송 비용을 부담해야 한다. 보통 원거리 물류비의 비중은 원거리 물동량 비중의 두 배가 넘을 정도로 비용 부담이 크다.

    자동차 회사 A는 시장 수요에 기민하게 대응하고 비용을 최소화하기 위해 물류망을 재조정하기로 했다. 그러기 위해서는 자동차를 출고지에서 수요지까지 대량 수송할 수 있는 신규 중간거점을 마련해야만 했다. A사는 먼저 자동차 수요량과 공급량의 지역적 패턴과 원거리 물동량이 빈번하게 발생하는 지역을 파악했다. 다음으로 원거리 물동량의 방향성, 각 지점까지 운송할 때 발생하는 비용 등을 분석해 지역별 권역을 설정했다.

    권역별로 출고지에서 중간거점, 도착지까지 비용이 최적화되는 지점이 어느 곳인지 시뮬레이션을 했다. 나아가 도로 접근성과 토지 매입비용의 적정성, 인허가 용이성 등을 분석해 국지적인 입지 후보지까지 도출했다. 이 모든 것이 GIS를 활용했기 때문에 가능한 일이었다.

    A사는 고객 수요와 기업의 공급, 이 둘 사이의 불균형을 공간적 문제로 바라봤다. 시장과 공간의 흐름을 감(感)이 아닌 공간지표의 분석을 통해 증명하고 해결책을 모색했다. 경영 이슈의 중심을 공간에 놓고 정보를 활용한 것이다.

    무엇이 문제인지, 어떻게 수정하고 개선해야 하는지에 대한 질문에서 이제는 ‘어디에서’ 문제가 발생하고 ‘어디에서’ ‘어떻게’ 문제를 해결해야 할지의 이슈로 경영 전략의 첫 단추가 끼워지고 있다.

    우리나라 최고 상권인 명동은 국내외 패션 브랜드들의 각축장이다. 매출을 확보할 수 있는 입지일 뿐만 아니라 자사 제품을 고객들에게 혹독하게 평가받아 일반 소비자의 패션 트렌드를 민감하게 읽어낼 수 있는 장소이기 때문이다.

    그런데 다수의 패션기업이 이른바 핫플레이스에 입지하려고 안간힘을 쓰는 것과 반대로 주거인구가 풍부한 지역과 궁합이 맞는 패션 카테고리가 있다. 바로 어덜트 패션이다.

    지도로 고객을 탐지한다

    어덜트 패션은 지역밀착형 업종이기 때문에 고객 관리가 매우 중요하다. 같은 브랜드라도 배후 지역의 인구 구성에 따라 진열 상품이 바뀔 정도다. 이 때문에 어덜트 패션 기업들은 할인 혜택과 사은품 증정 등의 이벤트 등을 통해 고객의 멤버십 가입을 유도하고 있다. 축적된 고객 정보는 연령, 성, 구매 상품, 구매액 등에 따라 여러 가지 항목으로 묶여 마케팅 활동의 계획, 실행, 관리에 활용된다. CRM으로 활용하는 것이다.

    최근에는 여기에 고객의 위치정보를 덧입혀 gCRM으로 활용하고 있다. 새롭게 고객 정보를 수집할 필요 없이 지금까지 모아온 주소 데이터만 좌표로 변환해 사용하면 된다.

    우리나라의 패션 역사를 이어오고 있는 어덜트 패션 기업 B사는 최근 신규매장 입지 전략을 수립하고 신규고객 확보와 기존 고객의 업셀링(up-selling·연쇄 판매) 유도를 위해 고객 정보를 활용하고 있다. 몇 년 동안 충실하게 모으고 업데이트한 고객 정보가 그 기반이 됐다.

    고객의 주소 정보를 지도상의 X, Y 좌표로 변환해 고객 분포, 매출 분포를 분석하니 점포별로 고객들이 멀리서 오는지, 가까이에서 오는지, 매출은 주로 어느 지역에서 발생하는지 판단할 수 있었다. 또 위치정보는 자연스럽게 고객들의 주거 유형, 즉 아파트에 거주하는지, 빌라에 거주하는지 등의 정보도 알 수 있게 해줬다. 또 고객이 위치한 곳의 부동산 가치를 조사함으로써 간접적인 소득도 파악했다. 고객의 위치정보에 인문·사회 지리 공간 데이터를 녹여냈기 때문에 가능한 일이었다.

    이렇게 B사는 위치정보를 분석함으로써 자사에 중요한 고객은 누구인지, 매출이 높은 매장의 배후 상권의 특징은 무엇인지를 알 수 있었다. 이제 B사는 이러한 지리정보 분석 결과를 기반으로 우수한 배후 여건을 지녔지만 아직 파악하지 못한 잠재시장을 지도화함으로써 출점 지역을 전략적으로 선정하고 있다. 즉, B사의 고객이 될 수 있는 사람들이 존재하는 곳에 찾아가 매장을 여는 것이다.

    B사의 위치정보 활용은 여기서 멈추지 않는다. 지역별로 차별화된 마케팅 전략을 수립하기 위해 매장별로 특정 상품을 구매한 고객들의 분포를 지도에 그렸다. 그 결과 티셔츠는 전반적인 지역에서 두루두루 구매되고 있었으나 상대적으로 고가인 점퍼는 특정 지역에서만 유독 구매빈도가 높다는 사실이 드러났다.

    티셔츠 구매빈도는 높지만 점퍼 구매빈도는 낮은 지역과 티셔츠와 점퍼 모두 구매빈도가 높은 지역을 추출해 두 지역의 속성을 비교했다. 점퍼보다 티셔츠의 구매빈도가 월등히 높은 곳은 상대적으로 평형대가 큰 아파트 밀집 지역이었고, 점퍼와 티셔츠 모두 구매빈도가 높은 지역은 일반적인 중·소 평형대의 빌라 밀집 지역이었다. 소득 수준이 상대적으로 높을 것으로 추측되는 지역에서 오히려 고가 상품 구매가 이뤄지지 않고 있었던 것이다. 이렇게 국지적 단위에서 시장을 진단한 B사는 점퍼보다 티셔츠가 더 많이 팔린 지역 고객들이 고가 상품을 구매하도록 유도하기 위해 광고전단, 할인쿠폰 발송 등의 프로모션 전략을 고려하고 있다.

    B사가 지리정보를 활용하는 노력은 단순히 입지 선정과 지역적으로 차별화된 마케팅 전략을 수립하기 위한 방편이 아니다. 뛰어난 점포 개발 담당자는 스카우트의 첫 번째 대상이 되고 있다. 오늘의 탁월한 내부 전술가가 내일의 적장(敵將)이 되는 현실에서 입지 전략 및 지역 마케팅 노하우를 고도화하는 기반으로 활용해 사내 지식역량을 강화하기 위한 것이다. 또한 점주가 갖고 있는 지역에 대한 이해와 본사의 객관적인 시장 진단 및 평가를 공유해 물량 계획과 마케팅 계획을 수립하려는 커뮤니케이션 노력의 일환이기도 하다.

    고객이 흐르는 바람길, 빅 데이터에 답 있다

    일반적으로 해상 풍력자원은 육상 풍력자원에 비해 풍속이 강하고 에너지밀도의 분포가 균일하기 때문에 상대적으로 더 큰 에너지원이 될 수 있다. 해상의 풍속은 육상에 비해 20% 정도 높아 동일한 풍력발전 시스템으로도 70% 정도 더 많은 전기를 생산한다. 바람이 오랫동안 강하게 부는 곳이 어디인지에 따라 풍력발전의 성패가 좌우된다. 해상풍력 자원의 잠재량과 단지 개발의 적합성을 평가하기 위해 국가바람지도가 활용된다. 국가바람지도는 수치 기상예측, 파랑지도 등 빅 데이터(Big data)를 통해 구축된다.

    그렇다면 고객이 어디로 흐르는지, 어디에서 오랫동안 머무는지, 그 바람길은 어떻게 알 수 있을까?

    통계청은 5년마다 인구통계 총조사를 실시해 전수 조사한 인가구 정보를 집계구 단위(통계정보를 공표하는 지역단위로 행정동보다 약 25배 정교하다)로 발표하고 있다. 이 센서스 데이터를 지리적 인구통계 데이터(geo-demographic data)라고 한다. 한편 금융기관과 통신회사가 자사의 고객 데이터를 분석해 생산해낼 수 있는 데이터는 지리적 라이프스타일 데이터(geo-lifestyle data)라고 할 수 있다.

    금융기관은 고객의 결제정보를 소비성향별로 분류하고 여기에 좌표를 부여해 세부 공간 단위로 라이프스타일 정보를 만들어낸다. 이뿐이 아니라 매장마다 결제정보를 집계해서 어떤 지역에서 어떤 업종이 상승세인지, 하락세인지까지 파악하고 있다. 통신사들은 기지국 통신 트래픽을 분석해 시간대별로 유동인구를 추정한다.

    한 해 평균 자영업 창업이 100만 건에 달하고 이 중 1년도 안 돼 85만 개가 폐업하는 현실에서 금융기관과 통신회사의 이러한 정보는 상권을 객관적으로 판단할 수 있는 도구가 된다. 그동안 정성적으로 이뤄지던 상권분석이 좀 더 정량화된 형태로 진단할 수 있도록 진화하는 것이다.

    지도라는 매체 속에 기업 내부 정보(고객 정보, 매장 속성 정보 등)와 외부 정보(부동산 정보, 교통정보 등)를 합치면 기존에는 파악하지 못했던 새로운 문제해결의 실마리가 보인다. 소득 수준에 따라 선호하는 제품이 지역별로 어떻게 다른지 파악해 기존의 영업 방식에서 벗어나 지역 기반 마케팅 방식으로 전환할 수 있다. 우리 기업이 갖고 있는 매장 중 우량한 매장과 그렇지 못한 매장의 입지 여건을 비교 분석해 향후 출점 전략을 수립할 수 있다. 나와 경쟁점의 입지를 비교함으로써 배워야 할 입지 전략과 차별화해야 할 입지 전략도 모색할 수 있다.

    누군가가 자사 데이터베이스 안에 100만 명의 고객 정보가 쌓여 있다고 자랑할 때 누군가는 1만 명도 채 안 되는 고객 정보를 지도 위에 뿌려 분석해봤을 것이다. 방대한 데이터를 갖고 있어도 여전히 감에 의존해 경영전략을 수립하는 기업이 많다. 그러나 지금은 철저한 데이터 분석을 통해 경쟁우위를 차지해야 하는 시대다.

    신용카드의 소비지도 두 장(지도1,2)을 들여다보자. 동일한 시기, 같은 지역에서 20대와 70대 2개 연령집단의 카드 사용 패턴은 지리적으로 확연히 다르다.

    강남역은 서울시에 소재한 전철역 중 승하차 이용객 수 1위, 버스노선 밀집도 1위를 자랑하는 상권 1번지로 떠올랐다. GIS 지도에는 수채화 물감처럼 색의 농도가 다르게 표현된다. 색의 농도는 신용카드 사용금액이 많을수록 진하게 표현된다. 즉, 돈 씀씀이의 밀도(Density)를 지도에 표현한 것이다.

    신용카드 C사의 결제정보 중 강남역으로부터 반경 2㎞ 이내 지역만 따로 불러왔다. 2011년 10월 총 143만 건의 결제 데이터의 총 사용금액 792억 원을 성별, 연령별, 시간대별, 요일별로 분석했다. 현행 법률상 개개 점포의 결제정보는 드러낼 수 없다. 따라서 강남역 반경 2㎞ 이내 지역을 1123개 소블록으로 쪼개 각각 결제정보를 블록별로 따로따로 집계해 개개 점포(가맹점)의 매출액은 드러나지 않도록 비밀 보호 규정을 지키되 상권을 분석할 수 있는 통계는 적극 활용하는 지혜를 발휘했다.

    지도 위의 고객 정보 황금 캐는 열쇠 된다


    792억 원은 143만 건의 카드결제 합산금액이므로 카드를 한 번 사용할 때마다 평균적으로 약 5만5000원을 사용한 셈이다. GIS 지도를 들여다보며 C사는 누가 언제 어디서 무엇에 얼마를 사용했는지 분석한다. C사는 업종별로 카드 사용의 패턴을 읽어 누구에게 어떻게 마케팅을 할지 계획을 수립할 수 있다. 다른 경쟁사와 비교할 때 C사의 카드 사용 점유율이 높은 지역과 낮은 지역을 분별할 수 있다. 또 유력한 가맹점이 몰려 있는 블록에서는 별도의 가맹점 관리 지침을 마련하면 좋을 것이다.

    C사의 소블록별 카드 사용 정보가 유통전문 E사에 제공됐다. D사의 전략기획본부의 신규사업팀은 당시 20, 30대를 핵심 타깃으로 새로운 유형의 소매 브랜드를 준비하고 있었다. 신규 브랜드 제1호점을 강남역 상권에 열어 실험하기로 결정을 내린 상태였다. 따라서 강남역 일대에서 20대의 소비패턴을 이해하는 것은 사업기획에서 가장 중요한 내용이 될 터이다. E사의 전략은 그것부터 지도로 확인하는 것에서 출발했다.

    C사 카드결제 정보에서 20대만을 따로 추출해 다른 연령층의 매출패턴과 비교했다. 20대는 타 연령층에 비해 카드 사용처가 가장 비좁았다. 이를테면 40대는 카드 사용처가 강남역 2㎞ 반경 내에서 훨씬 골고루 흩어져 있다. 극명한 대비는 20대와 70대를 비교할 때에 나타났다. 20대 카드 사용자는 강남역을 중심으로 500m 반경 내에서 가장 높은 사용 밀도(핫스폿·Hot Spot)를 나타냈다. 일부 신사역, 압구정역, 청담동 일대에 중저밀도가 형성되기는 하지만 강남역의 고밀도를 따라가진 못한다.

    반면 70대 카드 사용자는 강남역 20대 핫스폿을 눌렀을 때 풍선처럼 주변에서 부풀어 올랐다. 강남역에서 카드 사용은 미미하나 북쪽으로 신논현역, 동쪽으로 역삼역, 남쪽으로 양재역 부근, 그리고 청담동 일대에서 4개의 서로 떨어진 핫스폿을 형성하고 있었다. 당연히 강남역 일대에는 20대가 선호하는 식음시설, 영화관, 패션점, 학원, 메디컬 의원 등이 밀집해 있다. 20대와 70대는 그렇게 서로 다른 동선을 형성하며 서로 다른 소비패턴을 드러냈다.

    단순해 보이는 두 장의 GIS 지도 이면에는 빅 데이터(Big Data)가 깔려 있다. 강남역 2㎞ 반경 내에 43개역 전철역은 단순히 위치만을 나타내는 것이 아니다. 1일 평균 승하차 이용객 193만4667명의 각각 다른 차이를 담고 있다. 428개 버스정류장에는 총 2970개 노선이 중복돼 겹쳐 있다. 노선별로 수도권 어디까지 버스가 연결되는지 알 수 있다.

    상권은 생물이다

    1일 평균 전철 이용객은 2010년 기준 강남역(20만 명), 고속터미널역(15만 명), 삼성역(14만 명), 선릉역(14만 명), 교대역(11만 명), 역삼역(10만 명), 양재역(9만 명), 신사역(5만 명), 신논현역(3만5000명) 순이다. 버스노선의 경우, 2011년 기준으로 정류장별 노선 수를 살펴보면 강남대로를 따라 우성아파트 사거리(61개), 뱅뱅사거리(59개), 양재역(54개), 강남역(48개), 논현역(47개), 신사역(41개), 고속터미널(36개), 선릉역(34개), 무역센터(23개), 교보타워(20개) 순으로 높다.

    그 외에도 공동주택 5994개 동, 총 11만4892가구의 분포, 사업체 6만5726개 업체의 일자리 70만2684개가 4단계 업종별로 구분돼 지도에 저장돼 있다. 식당은 말할 것도 없이 상권의 특성을 만들어내는 중요한 경제생태계의 구성지표가 된다. 식당의 분포는 상권의 발달 수준을 나타낸다. 압구정동과 강남역에서 최고밀도를 형성하고 교대역, 신사역, 역삼역, 선릉역, 고속터미널역 주변에서 밀집도가 두드러졌다.

    지도 위의 고객 정보 황금 캐는 열쇠 된다
    상권은 생물처럼 하루하루 시간대별로 요일과 계절에 따라 달라진다. 오전 시간 식당가는 한산한 반면 종합병원의 카드결제는 고점대로 진입한다. 퇴근 후 강남역 주변에서 고밀도가 만들어졌다가 심야시간이 되면 24시간 주점이 몰려 있는 지역으로 카드 소비가 이동한다. 패션, 교육, 의료, 소매의 카드 사용 밀도는 저마다 달리 형성된다. 이 세세한 소비패턴을 육감으로 읽을 수 있는지 E사의 실무팀장에게 물었다. 그는 유통업계에서만 15년 차인 베테랑이다. “그건 X-ray도 안 찍어보고 수술부터 하려는 의사와 같다”고 답했다.

    2012년 3월 기준 ‘총각네 야채가게’(이하, 총각네) 30개 점포의 위치를 살펴보자. 30개 점포의 시구별 분포를 출점 수별로 나열해보면 강남구(9), 송파구(6), 양천구(3), 용인시(3), 안양시(2), 서초구(2), 영등포구(2), 고양시(1), 성남시(1), 용산구(1) 차례로 나타난다. 서울을 대표하는 강남지역 3개구(강남, 서초, 송파)의 점포 수는 17개다. 누구나 ‘총각네’ 전체 점포의 56%가 강남 3개구에 몰려 있다는 것을 알 수 있다. 그러나 나머지 13개 점포는 어디에 왜 분포하는가? 30개 점포를 모두 아우르는 핵심적인 변수는 무엇인가?

    야채가게의 전략지도

    ‘총각네’의 입지 전략은 ‘선택과 집중’의 전형을 보여준다. “저희 전략은 처음부터 ‘돈을 쓸 수 있는 사람에게서 돈을 벌자’였습니다. 그래서 소득 수준이 높은 곳들, 교육열이 높은 곳들을 위주로 진행합니다. 왜냐하면 교육열이 높은 곳들이 주로 소비문화가 강합니다.” ‘총각네’ CEO가 인터뷰에서 밝힌 전략 기준은 소득수준과 교육열 두 가지가 핵심이다. ‘총각네’가 87%를 버리고 12.8%를 선택한 배경이다.

    지도 위의 고객 정보 황금 캐는 열쇠 된다
    GIS 분석가는 각종 지리정보를 컴퓨터에 저장해놓고 지도 위에 다양한 데이터를 펼쳐본다. GIS 분석가가 다루는 데이터에 의하면 2011년 기준 서울시 아파트는 총 204만1094가구, 경기도는 267만1533가구로 합치면 총 471만2627가구다. 그중 정부가 고시한 기준시가 4억 원 이상 아파트는 60만4812가구로 전체의 12.8%다.

    GIS 지도에 잘 표현된 것처럼 ‘총각네’ 가게는 놀랍도록 기준시가 4억 원 이상 아파트 밀집지역에서만 점포를 열고 있다. 전략적 안목은 맨주먹 트럭행상을 연매출 수백억 원대의 기업가로 변모시켰다. 다시 ‘총각네’ 30개 점포의 시구별 분포를 수치로 들여다보는 것과 지리정보로 분석한 것의 차이를 비교해보자. 도표 속에 숨어 있던 평범한 데이터가 GIS 지도 위에서 시각적 통찰력으로 전환된다. ‘총각네’ 입지 전략이 한 장의 지도 속에 명료하게 드러난다(지도3 참조).

    다시 피터 드러커를 찾아본다. 그는 스스로 회고록을 쓰는 대신 매킨지의 정신적 창업자 마빈 바우어의 회고록을 쓴 엘리자베스 에더샤임을 불렀다. 그녀에게 일대기 대신 자신의 경영 메시지를 정리해달라고 요청했다. 길고 긴 수십 차례의 인터뷰를 바탕으로 이라는 책이 발간됐다. 이 책은 ‘사냥지도’라는 비유로 이야기를 끝맺고 있다. 사냥지도는 석기시대 동굴에서 발견된 것으로 현존하는 가장 오래된 지도다.

    ‘내일을 만들기 위한 첫 번째 단계는 환경에 대해 우리가 어떻게 이해하고 있는지 그 모습을 그려보는 것이다. 나는 이것을 드러커의 사냥지도(Drucker′s Marauder′s Map)라고 명명한다. 그 지도는 계속 변하고 최신 자료에 근거해 수정된다. 사물이 변하고, 상황이 달라지고, 그리고 사람이 움직이면, 지도는 그에 따른 변화들도 반영한다.’

    - 중에서

    MIT 경영대학원과 IBM 기업가치연구소는 2010년 전 세계 3000명에 달하는 기업 간부 및 분석가를 대상으로 설문조사를 했다. 기업의 통찰력 강화를 위해 향후 2년 동안 가장 중요한 것은 무엇인가? 경영리더에게 현재 가장 중요하게 취급하는 정보가 무엇인지 물었다. 1)기간별 동향분석 및 예측 2)표준화된 보고방식 3)데이터의 시각화 4)비즈니스 프로세스에 적용되는 분석기술 5)시뮬레이션 및 시나리오 개발 순으로 응답이 집계됐다.

    또 향후 2년 동안 가장 중요하게 준비해야 할 경영 도구에 대해서는 1)데이터 시각화 2)시뮬레이션 및 시나리오 개발 3)비즈니스 프로세스에 적용되는 분석기술 4)회귀분석 등 수학적 모형화 5)기간별 동향 분석 및 예측 순으로 대답했다. 동시에 60%의 응답자가 ‘자사가 보유한 데이터에 대한 활용 능력이 미흡하다’고 대답했다(그림 참조).

    전자기업 E사는 전국의 사업장과 R·D 캠퍼스에 관한 내외부 정보를 8개월에 걸쳐 GIS 지도에 모았다. 임직원의 출퇴근 동선부터 해당 도시의 장단기 도시계획까지 포괄했다. 부동산 지가(地價) 변동과 신설 도로망의 현황을 종합적으로 파악했다. 새로운 전략 방침이 결정되면 인적, 물적 자원을 어디에서 어디로 이동할 경우 신규 부지는 어디에서 어떻게 확보할 것인지 대비하고 있다. 최고경영진이 질문하면 한눈에 현황과 전망을 펼쳐놓고 즉각적인 실행이 가능하도록 ‘전략지도’를 마련해놓은 것이다.

    통찰력의 시각화

    1등항해사를 거쳐 대한민국 해양탐사선 온누리호 항해를 책임지고 있는 이민수 선장은 말한다. “항해할 때 가장 중요한 일은 현재 내가 있는 위치를 정확히 파악하는 것이다. 그래야 목적지로 향하는 방향을 결정하고 돛이나 키를 조정할 수 있다.”

    오늘의 바다를 항해하는 선장은 나침반, 종이지도, 망원경 외에 어떤 도구를 활용하는가? GPS, GIS, 초음파탐지기를 함께 사용한다. 수천 ㎞ 상공에서 움직이고 있는 인공위성 정보와 바닷속 지형을 컴퓨터지도에 종합해서 항로를 잡아간다. 그렇게 1200년 전 장보고 선단이 상상조차 해보지 못한 남극과 북극의 빙산 사이로 탐사선의 항해는 계속되고 있다.



    댓글 0
    닫기

    매거진동아

    • youtube
    • youtube
    • youtube